SO(3) 的伴随性质

十四讲上第三讲的两道习题,首先证明对于 SO(3), 有

\[\mathbf{R} p^{\wedge} \mathbf{R^{T}} = (\mathbf{R p})^\wedge\]

证明

\[\forall v \in R^{3} \\ (R p)^{\wedge} v=(R p) \times v=(R p) \times\left(R R^{-1} v\right)=R\left[p \times\left(R^{-1} v\right)\right]=R p^{\wedge} R^{-1} v\]

并且由于旋转矩阵 SO(3) 的转置等于其逆,所以要证明的等式成立。

利用此结论,可以证明 SO(3) 的伴随性质

\[\mathbf{R}^{T} \exp \left(\phi^{\wedge}\right) \mathbf{R}=\exp \left(\left(\mathbf{R}^{T} \phi\right)^{\wedge}\right)\]

根据罗德里格斯公式, 设

\[\phi =\theta a\]

注意,下面的式子中 R 与 RT 写反了,但是道理都是一样的…

那么左边

\[\begin{aligned} &=R\underline{\left[\cos \theta \mathbf{I}+(1-\cos \theta) a a^{T}+\sin \theta a^{\wedge}\right]} R^{T} \\ &=\cos \theta \mathbf{I}+(1-\cos \theta) R\left(a a^{T}\right) R^{T}+\sin \theta\underline{\left(R a^{\wedge} R^{T}\right)} \\ &=\cos \theta \mathbf{I}+(1-\cos \theta) R\left(a a^{T}\right) R^{T}+\sin \theta\underline{(R a)}^{\wedge} \end{aligned}\]

右边等于

\[\begin{aligned} &=\cos \theta \mathbf{I}+(1-\cos \theta)(R a)(R a)^{T}+\sin \theta(R a)^{\wedge}\\ &=\cos \theta \mathbf{I}+(1-\cos \theta) R\left(a a^{T}\right) R^{T}+\sin \theta(R a)^{\wedge} \end{aligned}\]

左边等于右边,此性质可以用来交换 R 与 ϕ 的 位置,也就是说:

\[\exp \left(\phi^{\wedge}\right) \mathbf{R}= \mathbf{R}\exp \left(\left(\mathbf{R}^{T} \phi\right)^{\wedge}\right)\]

该式称为 SO(3) 上的伴随性质,同样的,在 SE(3) 也有伴随性质:

\[\mathbf{T} \exp \left(\xi^{\wedge}\right) \mathbf{T}^{-1}=\exp \left(\left(Ad(\mathbf{T}) \xi\right)^{\wedge}\right)\]

其中

\[Ad(T) = \begin{bmatrix} \mathbf{R} & \mathbf{t}^{\wedge}\mathbf{R} \\ \mathbf{0} & \mathbf{R} \end{bmatrix}\]

伴随性质的应用,利用右扰动模型推导

\[\frac{\mathrm{d} \ln \left(\mathbf{R}_{1} \mathbf{R}_{2}^{-1}\right)^{\vee}}{\mathrm{d} \mathbf{R}_{2}}\]

推导过程如下

\[\begin{aligned} &\frac{d\left(\ln \left(R_{1} R_{2}^{-1}\right)\right)^{\vee}}{d R_{2}} \\ &=\lim _{\varphi \rightarrow 0} \frac{\ln \left(\mathrm{R}_{1}\left(\mathrm{R}_{2} \exp \left(\varphi^{\wedge}\right)\right)^{-1}\right)^{\vee}-\ln \left(R_{1} R_{2}^{-1}\right)^{\vee}}{\varphi} \\ &=\lim _{\varphi \rightarrow 0} \frac{\ln \left(\mathrm{R}_{1}\left(\exp \left(\varphi^{\wedge}\right)\right)^{-1} \mathrm{R}_{2}^{-1}\right)^{\vee}-\ln \left(R_{1} R_{2}^{-1}\right)^{\vee}}{\varphi} \\ &=\lim _{\varphi \rightarrow 0} \frac{\ln \left(\mathrm{R}_{1}\left(\exp \left(-\varphi^{\wedge}\right)\right) \mathrm{R}_{2}^{-1}\right)^{\vee}-\ln \left(R_{1} R_{2}^{-1}\right)^{\vee}}{\varphi} \\ &=\lim _{\varphi \rightarrow 0} \frac{\ln \left(\mathrm{R}_{1}\left(\exp \left(-\varphi^{\wedge}\right)\right) \mathrm{R}_{2}^{T}\right)^{\vee}-\ln \left(R_{1} R_{2}^{-1}\right)^{\vee}}{\varphi}\\ &=\lim _{\varphi \rightarrow 0} \frac{\ln \left(\mathrm{R}_{1} \mathrm{R}_{2}^{-1}\left(\exp \left(\left(-\mathrm{R}_{2} \varphi\right)^{\wedge}\right)\right)\right)^{\vee}-\ln \left(R_{1} R_{2}^{-1}\right)^{\vee}}{\varphi} \\ &=\lim _{\varphi \rightarrow 0} \frac{J_{r}\left(\ln \left(\mathrm{R}_{1} \mathrm{R}_{2}^{-1}\right)^{\vee}\right)^{-1}\left(-\mathrm{R}_{2} \varphi\right)+\ln \left(R_{1} R_{2}^{-1}\right)^{\vee}-\ln \left(R_{1} R_{2}^{-1}\right)^{\vee}}{\varphi} \\ &=-J_{r}\left(\ln \left(\mathrm{R}_{1} \mathrm{R}_{2}^{-1}\right) ^{\vee}\right)^{-1} \mathrm{R}_{2} \end{aligned}\]

其中用到了 BCH 公式的近似形式:

\[\forall \mathbf{R}, \quad \ln \left(\mathbf{R} \exp \left(\boldsymbol{\phi}^{\wedge}\right)\right)^{\vee}=\ln (\mathbf{R})^{\vee}+J_{r} (\ln(\mathbf{R})^{\vee})^{-1} \boldsymbol{\phi}\]